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Abstract
We consider the problem of Anderson localization in disordered systems with interactions.
We present a numerical approach in quasi-one-dimensional (quasi-1D) systems which combines
aspects of the transfer matrix and Green’s function recursion methods with the density matrix
renormalization group. The method is applied to spinless fermions in 1D and a generalization to
finite cross-sections is outlined.

1. Introduction

At least since the work of Anderson (1958), if not earlier
(Landauer 1951), it has been known that the wavefunction in
a disordered system can become localized and that this gives
rise to a metal–insulator transition (MIT), either as disorder
increases or as the Fermi level is changed. Much effort has
been expended in numerical simulation of the non-interacting
system, and a reasonable consensus has emerged, with theory
and experiment in general qualitative agreement. Quantitative
agreement, such as on the value of critical exponents or, even
more difficult, the calculation of critical values of disorder
or the Fermi energy in real systems, is a long way off. In
three-dimensions (3D), for example, the calculated value of
the critical exponent, assumed to be universal, is markedly
larger than the experimentally measured value (Slevin and
Ohtsuki 1999). This discrepancy would suggest that there
is a fundamental problem either with the experiments and
their interpretation or with the numerical work, or with
both. An obvious factor missing from the numerical work
is the electron–electron interactions. Furthermore, some
have claimed to observe a metal–insulator transition in two-
dimensions (2D), contrary to the widely accepted scaling
theory of Anderson localization (Kravchenko et al 1994).
This is often attributed to the effect of interactions. It is
important therefore to consider the joint effect of disorder
and interactions. Unfortunately, both aspects on their own
constitute difficult problems. Combining them may well be
considered over-ambitious. On the one hand, the model
becomes a many-body system and the Hilbert space therefore
grows exponentially with the system size. On the other hand,
the simplifications which make the many-body problem at least

partly tractable depend heavily on symmetry: something which
cannot be applied to disordered systems. Nevertheless, there
has been some progress which suggests that the inclusion of
interactions may lead to non-trivial behaviour.

Shepelyansky (1994), for example, considered two
interacting particles. In 1D, the interactions cause a large
enhancement of the localization length. In 2D, Ortuño and
Cuevas (1999) has presented evidence of an even stronger
effect, possibly leading to delocalization.

For treating the finite density problem in an ordered
system the most successful approach has been the density
matrix renormalization group (DMRG) method (White 1992,
1993). This works by discarding basis states that do not
contribute significantly to the ground-state density matrix.
When this method was applied to the Anderson interacting
model (defined in equation (1)), a delocalized regime was
found for attractive interactions (Schmitteckert et al 1998,
1998a). Extensions of DMRG to 2D have encountered
problems.

In trying to find an algorithm capable of dealing with
the disordered and interacting systems, we have to overcome
several difficulties. Firstly, most of the measures of localization
used in the study of non-interacting systems are not easily
applicable to many-body states. Secondly, the exponential
growth of the Hilbert space must be tackled. This either
requires us to reduce the number of states and keep the
total within manageable bounds, or to define new quantities
which encapsulate all the relevant information while remaining
finite. Another possible approach would be to transform
the system into an equivalent non-interacting one using a
Hubbard–Stratonovich transformation or similar. This would
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inevitably involve adding an extra dimension but is certainly
something worth pursuing.

While searching for a suitable algorithm, certain facts of
life have to be borne in mind. These tend to affect both the size
of the storage requirements and the time required. Firstly, the
time required to diagonalize a general N × N matrix scales as
N3. Thus, on both storage and time grounds, there is a clear
preference for diagonalizing many small matrices rather than
one large one.

Recent studies of non-interacting systems (Slevin and
Ohtsuki 1999) have shown that, in order for the finite-
size scaling analysis to be successful and reliable, the
localization length must be calculated to better than 0.1%
accuracy. Comparing this with the statistical behaviour of non-
interacting systems implies that we require a length Lmax =
106λM, where λM is the localization length or, equivalently, a
transmission coefficient T = 10−868 589. Note that this is much
less than the machine accuracy, typically 2.2 × 10−16. Hence
any algorithm which requires us to calculate this quantity
directly, rather than its logarithm, is likely to fail.

We, Carter and MacKinnon (2005), have developed a new
approach incorporating aspects of DMRG together with the
transfer matrix and Green’s function recursion methods that
have proved so successful for studying the non-interacting case
(Carter 2003, MacKinnon and Kramer 1981, 1983). In this
paper we will discuss an improvement on that method and a
generalization to finite cross-section. We will also make some
effort to relate this approach to Green’s function recursion.

2. The algorithm

We start with a tight-binding model. The algorithm may be
applied to any 1D or quasi-1D system, where the interactions
are between nearest neighbours only. We should not expect,
therefore, to describe phenomena, such as the Coulomb glass
(Efros and Shkloviskii 1975), which are connected to long-
range interactions.

2.1. Hamiltonians

The method can deal with a wide range of different
Hamiltonians describing both fermions and bosons, with and
without spin, such as

Ĥspinless =
∑

i

εi ĉ
†
i ĉi + V

∑

i, j (n.n)

(
ĉ†

i ĉ j + ĉ†
j ĉi

)
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∑
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(
ĉ†
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) (
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Figure 1. At each iteration a new site is added to both ends of a 1D
chain.

which represent spinless fermions (1), the Hubbard model (2)
and bosons (3), respectively. ĉ†

i and ĉi represent particle
creation and annihilation operators. The first two terms
constitute the standard Anderson (1958) model used widely
in the study of the MIT. The extra U term represents the
interactions, while the term in the chemical potential μ must
be included, as the changing system size requires us to use a
grand canonical ensemble. The chemical potential or Fermi
energy μ controls the particle density in the system. If U > 0
the interactions are normal, that is, repulsive, whereas if U < 0
they are attractive. In common with most numerical studies of
Anderson localization, we will work at temperature T = 0.

2.2. The recursive method

The original version of our algorithm (Carter 2003, Carter and
MacKinnon 2005) required us to extend an existing chain by
adding an extra site to both ends (figure 1).

At each step we consider a set of states which may be
subdivided as

⎡
⎢⎣

|01�
L ,N 0L〉

|11�
L ,N−10L〉

|01�
L ,N−11L〉

|11�
L ,N−21L〉

⎤
⎥⎦ ≡

⎡
⎢⎢⎣

�
L+2,N
00

�
L+2,N
10

�
L+2,N
01

�
L+2,N
11

⎤
⎥⎥⎦ (4)

where �L ,N represents a state of a system of length L
containing N electrons. The simplest representation is as a
vector made up of four distinct parts, depending on whether
the additional sites are occupied or unoccupied. Note that the
subvectors �10 and �01 have the same length, as they include
the same set of states with N − 1 electrons. We can represent
the subvectors using an alternative notation

�
L ,N
00 = ĉ1ĉ†

1 ĉL ĉ†
L�L ,N

�
L ,N
10 = ĉ†

1ĉ1ĉL ĉ†
L�L ,N

�
L ,N
01 = ĉ1ĉ†

1 ĉ†
L ĉL�L ,N

�
L ,N
11 = ĉ†

1ĉ1ĉ†
L ĉL�L ,N

(5)

where we have used the fact that operating with ĉ†
nĉn on any

vector filters out the subvector containing states in which site
n is occupied, whereas ĉn ĉ†

n does the same for the subvector
in which site n is unoccupied. We note in passing that these
combinations of operators could be rewritten as two-particle
Green’s functions.

Starting from this representation, a density matrix

ρ (1 . . . 0, 0 . . . 1) =
〈
�

L ,N
10

∣∣∣ �
L ,N
01

〉
(6)

≡
〈
�L ,N

∣∣∣ĉ†
1 ĉL

∣∣∣ �L ,N
〉

(7)
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may be defined. This may be interpreted as the probability
that the addition of an electron on the left results in an electron
being emitted from the right. Again, we have a quantity which
may be written in terms of a Green’s function, but this time it
is a single-particle ‘lesser’ Green’s function, G<(1, L). The
quantity may also be related to the dependence on boundary
conditions (Schmitteckert et al 1998b, Kramer and MacKinnon
1993, Carter 2003). Note that, due to the indistinguishability
of the electrons, it is meaningless to demand that the same
electron emerges on the right. In fact, it is also valid classically
to ask the question whether an electron emerges from the right
whenever one is inserted on the left.

We can now define a localization length, λM, from

ρ(1 . . . 0, 0 . . . 1) ∼ exp(−2L/λM) (8)

⇒ λM = − lim
L→∞

2L

ln ρ
. (9)

This is very similar to the definition used in transfer matrix
calculations and is closely related to the sensitivity to boundary
conditions (Carter 2003).

2.3. Reducing the Hilbert space

A tractable algorithm for an interacting system must deal
with the exponential growth of the Hilbert space. It would
clearly be preferable to find a quantity whose dimensions
do not increase and which nevertheless encapsulates all the
information required, but, pending such a breakthrough, we are
obliged to find a strategy for throwing away states. Within the
tight–binding framework it is the only approximation in our
method.

In general we expect to find that a simple energy cutoff
will lead to the retention of the lowest energy states for a range
of particle numbers, N , around the desired density. As a first
attempt (Carter 2003, Carter and MacKinnon 2005) we tried
to choose a cutoff energy by fixing a maximum matrix size
and then applying that cutoff to all states. This tended to
result in the retention of those states with Nmin ± 4, where
Nmin is the number of particles for the state with the lowest
grand canonical energy; those for other particle numbers have
ground states above the energy cutoff. Unfortunately, we
found that this simple criterion failed to result in exponentially
decaying behaviour of ρ(1 . . . 0, 0 . . . 1), even in the absence
of interactions. Hence it failed the simplest test for any sensible
approach to our problem: that it correctly reproduces the
expected behaviour for non-interacting disordered systems.

We later realized that fixing an energy cutoff but allowing
the number of retained states to fluctuate produced better
results, and this is the criterion we used in all subsequent work
using this model. We note that this can potentially lead to
difficulties with very large matrices. It also involves an implicit
assumption about the nature of the distribution of many-body
states close to the ground state; namely, that the density of low-
lying states reaches some sort of equilibrium for long system
sizes. While this assumption is consistent with the results
of our calculations, it remains unclear whether this is a true
property of the system or an artefact associated with the cutoff
process itself.

Experience with DMRG (White 1992) suggests that a
more sophisticated cutoff method is required and that a simple
energy cutoff, such as we have used, is too naı̈ve.

3. The spinless single chain

3.1. Non-interacting limit

As the localization properties of a one-dimensional non-
interacting chain are well established (Pendry 1982a, 1982b,
1986, 1987, Pendry and Kirkman 1984, 1986, Pendry et al
1986, Slevin and Pendry 1988, Pendry and Barnes 1989)
this case serves as a simple test of the effectiveness of any
algorithm which aims to study the more complex problem.
All eigenstates are localized for any amount of disorder with
a localization length which depends on disorder as quoted as
(Kramer and MacKinnon 1993)

λ−1 = W 2

24(4V 2 − μ2)
. (10)

This is only valid for small disorder and there are numerous
special cases, but it is sufficiently general to serve as a test in
the present case. Note that the localization length diverges in
the limit of small disorder.

3.2. Clean phase space

The second limiting case is that of zero disorder with
interactions. This case can be mapped onto an XXZ spin chain
model and solved exactly for half-filling (Pang et al 1993, Yang
and Yang 1966a, 1966b, 1966c).

There are two limiting cases. For large positive U ,
repulsive interactions, a charge density wave (CDW) is found
in which alternate sites are occupied. On the other hand, for
attractive interactions and 0 > U > −2, the interaction
tends to cause clustering, but this is offset by the kinetic
energy which tends to spread the particles. This reaches an
extreme form for U < −2 when the lowest grand canonical
energy corresponds to either a completely full or a completely
empty system. Here we expect to see phase separation or
domain formation. This can be seen in figure 2. Note
the increasingly well defined minimum at half-filling with
increasing positive U and the maximum for U < −2. As
the U = −2 limit is reached from above, the ground-
state energy becomes independent of particle number N ; the
compressibility diverges. Above U = +2, a charge gap opens
up (Pang et al 1993, Bouzerar and Poilblanc 1994) and the
CDW corresponds to a Mott insulator state.

3.3. Typical results

As an illustration of the sort of results obtained with this
method in the non-interacting limit, consider figure 3. The
effect of interactions is shown in figure 4. Neither figure
is wholly satisfactory: the agreement with known results
(figure 3) is qualitatively correct, but there are clearly
quantitative differences. The number of retained states is still
too much of a factor (figure 4). Although the results appear to
be a long way from convergence, the qualitative behaviour is
as expected.
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Figure 2. Grand canonical ground-state energy for a (clean) chain of
ten sites as a function of particle number, N . The chemical potential
is chosen for half-filling (i.e. μ = U ).
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Figure 3. Inverse localization length against disorder when
interactions are turned off. The dotted line corresponds to (10). The
continuous line shows results for systems of up to 1000 sites, with
480 basis states on average retained per iteration. The results were
averaged over 1000 disorder realizations.

3.4. Problems with the original algorithm

The other fundamental difficulty with the original form of
the algorithm, besides the number of retained states, is the
necessity to calculate the scalar product in (7). This cannot be
calculated when its value drops below the machine accuracy,
2.2 × 10−16. This in turn limits the tractable length to below
L = 1000. The statistical issues this raises may be overcome
by averaging over smaller systems, but this is only useful
if there are no other length scales in the problem which are
comparable with or larger than L = 1000.

The calculation fails for low disorder, W/V = 2 (− 1
2 W <

ε < + 1
2 W ), even for U = 0. In this regime the density matrix

does not fall exponentially but tends to saturate at a finite value.

At each stage 75% of the states are eliminated. It is not
clear whether this really constitutes a problem. In any case
this is probably related to the fact that the convergence with
the number of retained states is unsatisfactory. The situation
improves when an energy cutoff is used and the number
of states is allowed to fluctuate, but convergence remains
unacceptable.
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Figure 4. Inverse localization length as a function of U . The three
lines correspond to different energy cutoff values. Each line is
averaged over 1000 systems which are allowed to extend to a
maximum of 1000 lattice sites. Disorder W = 2.

4. An improved algorithm

Let us start from the density matrix (7) written in the site-
occupation basis

ρ (1 . . . 0, 0 . . . 1) = Tr
[
U(L ,N)†ĉ†

1U(L ,N−1)ĉL

]
(11)

where U(L ,N) is the (2L × K (L ,N)) matrix whose columns are
the K (L ,N) retained states. We now define a new matrix

P(L ,N) = U(L ,N)†ĉ†
1U(L ,N−1) (12)

which may be interpreted as a representation of the operator ĉ†
1

in the reduced Hilbert space. P obeys the recursion relation

P(L+1,N) = V(L+1,N)†

[
P(L ,N) 0

0 P(L ,N−1)

]
V(L+1,N−1) (13)

in which V(L+1,N) is the matrix which transforms the
eigenvectors for a system of length L with N electrons into
those of a system of length L + 1 such that

U(L+1,N) =
[

U(L ,N) 0
0 U(L ,N−1)

]
V(L+1,N). (14)

Using P we are able to calculate the required density matrix,
ρ = Tr[P(L ,N)ĉL ], and hence the localization length, while
only adding a site to one end. In this case we only throw away
50% of the states at each iteration, rather than the previous
75%. Use of the matrix P brings an unexpected and far more
important bonus. Equation (13) has a product structure which
never requires us to calculate a scalar product of two almost
orthogonal vectors. It is thus possible to calculate P, and
hence ρ, accurately even when its value drops many orders of
magnitude below the machine accuracy. In fact we can employ
the same tricks as are used in transfer matrix calculations
so that we do not even run into the minimum representable
number. Other problems with the algorithm also disappear: the
method now behaves sensibly for low disorder and for values
of U approaching the limit at U → −2. In fact there are no
remaining restrictions on the parameter ranges for which the

4
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Figure 5. Disorder-interaction phase space plot for the single chain
spinless model at half-filling. The contours represent the inverse
localization length in intervals of 0.01. The lowest interval
corresponds to a localization length greater than 1000 sites. This plot
was produced using over 1300 points. Each point was averaged over
250 systems in which chains were allowed to extend to 2000 sites
and approximately 240 basis states were retained per iteration. Data
for W < 0.6 is not shown because the method is unreliable for low
disorder.

method behaves sensibly (other than U < −2). An additional
bonus is that exponential behaviour is obtained irrespective of
the method used for throwing away states. This should not
be too much of a surprise, as such behaviour is an almost
inevitable consequence of the product structure mentioned
above. All this suggests that the earlier results were heavily
influenced by the presence of a second length scale which may
have been larger than the largest system sizes attainable.

4.1. Disorder-interaction phase space

Figure 5 summarizes the results obtained with the original
algorithm and which we aim to improve with the new method.
Results for low values of W/V are not available and the
delocalized region comes too close to U = 0. We are now
able to fill out the gaps in this diagram and even more reliably
to study the boundary of the extended regime. It should also
be possible to extract information about the critical behaviour.
This is, however, a longer-term undertaking.

Nevertheless, the data in figure 5 contain many more
points than in previous work and refer to significantly larger
samples (Bouzerar and Poilblanc 1994, Schmitteckert and
Eckern 1996, Schmitteckert et al 1998b, 1998, Weinmann et al
2001). It should be noted that the upper limit of the delocalized
regime around W = 2.5 is a factor of two higher than predicted
by Schmitteckert et al, but lower than in earlier work (Bouzerar
and Poilblanc 1994).

5. Generalization to a finite cross-section

In our first attempts to deal with systems of width two or with
the Hubbard model (Carter 2003) we added a complete slice
or atom at each iteration. While this may be made to work for
small systems, it rapidly becomes prohibitively expensive and,
beyond a relatively small cross section, M = 8, completely
intractable. Instead we consider a method by which additional
sites are added to the L × M system one at a time. In order to
do so it is necessary to define a set of new ancillary matrices
which are designed to retain the information required to add
subsequent atoms to the slice. These are

Q(L ,N)
m = U(L ,N)†ĉ†

mĉmU(L ,N) (15)

R(L ,N)
m = U(L ,N)†ĉ†

mU(L ,N−1), (16)

which may be interpreted as representations of the number
operator and creation operator, respectively. Q is required for

Figure 6. The inverse localization length for U = 0 and W = 1 and 2 in 1D (left) and for strips of width M = 4 and 8 (right) plotted against
the inverse of the number of retained states. The dots on the left-hand axis (left-hand figure) indicate the known results for the non-interacting
system.

(This figure is in colour only in the electronic version)
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calculating any interaction terms involving a new site and site
m, whereas R is required for the corresponding hopping terms.

Both Q and R may be updated recursively in a similar way
to P, and their size is that of the number of retained states.

6. Convergence

While we have now made significant progress in overcoming
some of the problems which plagued our initial attempts to
study disorder and interactions, it must be conceded that one
major difficulty remains. This is illustrated in figure 6. Here
we see that the convergence with the number of retained states
is far from satisfactory. In order to improve this we aim to
learn from DMRG (White 1998), even if previous attempts
at direct use of that method left much to be desired. We
also note the interesting relationship between the ancillary
quantities required to improve the algorithm and various
Green’s functions. This is also a promising avenue for further
work.

6.1. Summary

We have presented a method of studying disordered and
interacting quasi-one-dimensional systems which combines
aspects of the transfer matrix and DMRG approaches. We have
been able to overcome some of the difficulties encountered
in our earlier method, and are now able to study systems
significantly larger than those achieved hitherto. However,
there is still room for improvement. In particular, it is
important to develop a more effective strategy for reducing the
Hilbert space, either by throwing away states or by defining
new quantities which encapsulate all the required information.
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